

NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF MECHANICAL ENGINEERING

9 Heroon Polytechneiou Str., Zografou 15780, Athens, Greece Tel: +30 210 772 3572, Fax: +30 210 772 3571, http://www.mech.ntua.gr/

DIPLOMA SUPPLEMENT

This Diploma Supplement model was developed by the European Commission, the Council of Europe and UNESCO/CEPES. The purpose of the supplement is to provide sufficient independent data, to improve the international 'transparency' and fair academic and professional recognition of qualifications (diplomas, degrees, certificates etc.). It is designed to provide a description of the nature, level, context, content and status of the studies that were pursued and successfully completed by the individual named on the original qualification, to which this supplement is appended. It should be free from any value judgments, equivalence statements or suggestions about recognition. Information in all eight sections should be provided. Where information is not provided, an explanation should be given.

- 1. INFORMATION IDENTIFYING THE HOLDER OF THE QUALIFICATION
- 1.1 Family name(s)
 TSIANTAS
- 1.3 Date of birth (DD/MM/YY) 14/12/1992
- 1.2 Given name(s) THEOFANIS
- 1.4 Student identification number or code 02110043
- 2. INFORMATION IDENTIFYING THE QUALIFICATION
- 2.1 Title conferred (in original language)
 DIPLOMA MECHANICAL ENGINEERING
- 2.3 Institution awarding the qualification (in original language)
 ETHNIKO METSOVIO POLYTECHNEIO
 (NATIONAL TECHNICAL UNIVERSITY OF ATHENS), STATE UNIVERSITY
- 2.5 Language(s) of instruction/examination Greek
- 2.2 Main field(s) of study Mechanical Engineering
- 2.4 Name and status of institution (if different from 2.3) administering studies (in original language)
 Same as in 2.3
- 3. INFORMATION OF THE LEVEL OF THE QUALIFICATION
- 3.1 Level of qualification
 ONE TIER DEGREE OF 5 YEARS
- 3.2 Duration of studies
 Full-time studies: 5 years
 Semesters: 10
 ECTS credits: at least 300
 Practical Training: Optional
- 3.3 Admission requirement(s)
 Unified upper secondary education (Ενιαίο Λύκειο) degree and success in national entrance exams

Page 1 Tsiantas Theofanis

4. INFORMATION OF THE CONTENTS AND RESULTS ACHIEVED

Mode of study 4.1

Full-time

4.2 Program requirements

To obtain the Diploma in Mechanical Engineering, the students are required to:

- 1. Register, attend and obtain passing grade in 65 semester courses (14 mandatory general courses + 30 mandatory core courses + 21 specialization courses). The ECTS units of all courses are reported in 4.3.
- Register, work on, write up and successfully defend a Diploma Thesis.

Program details (e.g. modules or units studied), and individual grades/marks/credits obtained

Modules examined and awarded a pass grade and the ones recognized or exempted from are listed below:

<u>Diploma Thesis:</u>
"Wind Turbine Load Alleviation using Trailing Edge Flaps"

Grade: 10.0

ECTS: 30.0 MODULE/COURSE			TYPE:	ECTS	
CODE	TITLE	SEMESTER	Core/ /General/ Spec/Optional	CREDITS	GRADE
2143	Mathematics Iβ	1	General (Mandatory)	5	8
2008	Mathematics Iα	1	General (Mandatory)	4	10
2161	Physics I	1	General (Mandatory)	5	9
2012	Mechanical Design I	1	Core (Mandatory)	4	7
2013	Introduction to Mechanical Engineering	1	Core (Mandatory)	3	8
2238	Introduction to Computer Science	1	General (Mandatory)	4	7
2248	Mechanics I	1	General (Mandatory)	6	10
2048	History of Science	1	General (Optional)	2	8
2241	Operating Systems and Programming Languages	2	General (Mandatory)	2	8
2282	Mathematics IIα	2	General (Mandatory)	5	9
2283	Mathematics IIβ	2	General (Mandatory)	4	10
2170	Physics II	2	General (Mandatory)	5	5
2010	Mechanics II	2	General (Mandatory)	6	10
2147	Mechanical Design II	2	Core (Mandatory)	5	5
2105	Engineering Materials	2	Core (Mandatory)	4	6
2242	Electric Circuits and Systems	2	Core (Mandatory)	4	9
2067	English language	3	Foreign Language	-	Course Exemption
2246	Mathematics IIIα	3	General (Mandatory)	4	10
2200	Introduction to Mechanical Workshop Technology	3	Core (Mandatory)	4	7
2148	Numerical Analysis	3	Core (Mandatory)	4	8
2247	Mechanics III	3	General (Mandatory)	6	9
2167	Machine Elements I	3	Core (Mandatory)	6	6
2245	Electromechanical Power Conversion Systems	3	Core (Mandatory)	4	9
2160	Engineering Economics	3	Core (Mandatory)	4	7
2219	Mechanisms and Introduction to Mechanical Design	4	Core (Mandatory)	4	9
2097	Thermodynamics I	4	Core (Mandatory)	6	7
2110	Fluid Mechanics I	4	Core (Mandatory)	6	10
2078	Machine Elements II	4	Core (Mandatory)	6	10
2132	Heat Transfer I	4	Core (Mandatory)	6	9
2039	Industrial Electronics	4	Core (Mandatory)	4	9
2121	English language	4	Foreign Language	2	10

Page 2 Tsiantas Theofanis

02110043

0070	Mark asiasl Managements	E	Core (Mandatory)	6	10
2079	Mechanical Measurements	5	Core (Mandatory)	D	10
2072	Production/Operation Management & Business Administration I	5	Core (Mandatory)	5	7
2156	Manufacturing Processes I	5	Core (Mandatory)	4	10
2021	Industrial Fluid Mechanics	5	Core (Mandatory)	4	9
2089	Machine Dynamics I	5	Core (Mandatory)	4	10
2086	Steam Generating Units I & Laboratory	5	Core (Mandatory)	6	10
2045	Thermal Turbomachines	5	Core (Mandatory)	4	10
2131	Hydraulic Turbomachines I & Laboratory	6	Core (Mandatory)	5	10
2032	Internal Combustion Engines I & Laboratory	6	Core (Mandatory)	6	10
2187	Environmental Technology	6	Core (Mandatory)	3	9
2093	Manufacturing Processes II	6	Core (Mandatory)	4	10
2029	Analysis of Mechanical Structures I	6	Core (Mandatory)	4	8
2007	Introduction to Automatic Control Systems	6	Core (Mandatory)	6	10
2030	Operational Research I	6	Core (Mandatory)	4	9
2169	High Pressure Hydraulic and Pneumatic Systems	7	Spec (Mandatory)	4	10
2220	Machine Dynamics II	7	Spec (Mandatory)	4	10
2023	Control Systems and Machine Regulation	7	Spec (Mandatory)	4	10
2192	Analysis of Mechanical Structures II	7	Spec (Mandatory)	4	10
2035	Machine Tools	7	Spec (Mandatory)	4	7
2259	Protection and Surface Manufacturing Processes	7	Spec (Optional)	4	10
2125	Business Games	7	Spec (Optional)	4	9
2264	Computational Methods for Structural Mechanics	8	Spec (Mandatory)	4	10
2290	Industrial Installations	8	Spec (Mandatory)	4	9
2249	Microprocessors-based Control	8	Spec (Mandatory)	4	10
2060	Non Conventional Manufacturing Processes	8	Spec (Mandatory)	4	10
2222	Manufacturing Systems I	8	Spec (Mandatory)	4	10
2266	Tools and Dies	8	Spec (Optional)	4	10
2022	Aerodynamics	8	Spec (Optional)	4	10
2274	Intelligent Control Systems and Robotics	9	Spec (Mandatory)	4	7
2289	Design for Manufacturing and Cost	9	Spec (Mandatory)	4	7
2276	Biomechanics and Biomedical Engineering	9	Spec (Mandatory)	4	9
2235	Advanced Materials	9	Spec (Mandatory)	4	10
2036	Ergonomics	9	Spec (Mandatory)	4	10
2267	Technology and Mechanics of Complex Materials	9	Spec (Optional)	4	10
2218	Aeroelasticity and Aeroacoustics	9	Spec (Optional)	4	8

ECTS Credit Total:

313

4.4 Grading scheme and, if available, grade distribution guidance

The grades scale through which is calculated the academic performance of the students is a ten-point one (0-10) as follows:

9-10 EXCELLENT

7-8,99 VERY GOOD

5-6,99 GOOD

Minimum passing grade is: 5 Minimum passing

Minimum passing grade is: 5. Minimum passing grade for the Diploma Thesis is: 5.5

The final grade of the Diploma degree is calculated

from the sum:

• The mean value of all course grades contributing 80/100 to the final grade and

• The grade of the Diploma Thesis, contributing 20/100 to the final grade.

4.5 Overall classification of the qualification (in original language)

> 9.10 (Nine point Ten) EXCELLENT, ΆΡΙΣΤΑ

Page 3 Tsiantas Theofanis

02110043

5. INFORMATION ON THE FUNCTION OF THE QUALIFICATION

5.1 Access to further study

Access to second cycle of studies

5.2 Professional status

The Diploma degree in an engineering discipline entitles its holder to the legally protected professional title "Engineer" and to exercise professional work in the field(s) of engineering for which the degree was awarded. Graduates of the School are licensed to exercise the profession of Mechanical Engineering by the Technical Chamber of Greece, after passing exams.

6. ADDITIONAL INFORMATION

6.1 Other information

The School of Mechanical Engineering NTUA has undergone external evaluation from the Hellenic Quality Assurance Agency for Higher Education (H.Q.A.A. - A.DI.P.), in 2012. The Evaluation Report is available at the following URL address:

http://www.hqaa.gr/external/NTUA MechEng 2012.pdf

6.2 Further information sources

- NATIONAL TECHNICAL UNIVERSITY OF ATHENS: http://www.ntua.gr/
- SCHOOL OF MECHANICAL ENGINEERING: http://www.mech.ntua.gr/
- MINISTRY OF EDUCATION AND RELIGIOUS AFFAIRS: http://www.minedu.gov.gr/
 - TECHNICAL CHAMBER OF GREECE: http://www.tee.gr/
- EUROPEAN COMMISSION: http://www.ec.europa.eu/
- NARIC: http://www.doatap.gr/
- http://www.enic-naric.net/

7. CERTIFICATION OF THE SUPPLEMENT

7.1 Date:

7.2 Name and Signature:

7.3 Capacity:

7.4 Official stamp or seal:

11/12/2015

ILIAS TATSIOPOULOS

DEAN OF SCHOOL OF MECHANICAL ENGINEERING

INFORMATION ON THE NATIONAL HIGHER EDUCATION SYSTEM

(i)Structure

According to the Law 3549/2007, higher education consists of two parallel sectors:

a) the University sector (Universities, Polytechnics, Fine Arts Schools, the Open University) and
b) Technological sector (Technological Education Institutions (TEI) and the School of Pedagogic and Technological Education).

The same law regulates issues concerning governance of higher education along the general lines of increased

participation, greater transparency, accountability and increased autonomy There are also State Non-university Tertiary Institutes offering vocationally oriented courses of shorter duration (2 to 3 years) which operate under the authority of other Ministries.

Entrance to the various Schools of the Universities (Panepistimio) and Technological Education Institutions (Technologiko Ekpaideftiko Idryma - TEI) depends on the general score obtained by Lyceum graduates on the Certificate, on the number of available places (numerus clausus) and on the candidates' ranked preferences among schools and sections.

Students who successfully complete their studies in universities and TEI are awarded a Ptychio (first cycle degree). First cycle programs last from four years for most fields to five years for engineering and certain other applied science fields and six years for medicine. The Ptychio leads to employment or further study at the post-graduate level that includes the second cycle leading to the second degree, Metaptychiako Diploma Eidikefsis - equivalent to the Master's degree - and the third cycle leading to the doctorate degree, Didaktoriko Diploma.

Tsiantas Theofanis

02110043

Recent legislation on quality assurance in Higher Education, the Credit Transfer System and the Diploma Supplement defines the framework and criteria for evaluation of university departments and for certification of student degrees. These measures aim at promoting student mobility and contributing to the creation of a European Higher Education Area.

- A detailed description of the Greek Education System is offered in:

 EURYDICE (hyyp://www.eurydice.org) database of the European Education Systems

 http://eacea.ec.europa.eu/education/eurydice/documents/thematic reports/122EN.pdf (pages 82,83) http://www.eurydice.org

Page 5 Tsiantas Theofanis

